Jump to content

Ranked voting

From Wikipedia, the free encyclopedia
(Redirected from Ranked ballots)
Ovals
Names
Numbers
Various types of ranked voting ballot

The term ranked voting refers to any voting system where voters order candidates or options from most to least preferred on their ballots. For example,Dowdall's method assigns 1, 12, 13... points to the 1st, 2nd, 3rd... candidates on each ballot, then totals the votes for each candidate. Ranked voting systems vary dramatically in how preferences are tabulated and counted, which gives each one very different properties.

Ranked voting systems are usually contrasted with rated voting methods, which allow voters to indicate how strongly they support different candidates (e.g. on a scale from 0-10).[1] Rated voting systems use more information than ordinal ballots; as a result, they are not subject to many of the problems with ranked voting (including results like Arrow's theorem).

Although not usually described as such, the most common ranked voting system is the well-known plurality rule, where each voter gives a single point to the candidate ranked first and zero points to all others. The most common non-degenerate ranked voting rule is the closely-related alternative vote, a staged variant of the plurality system that repeatedly eliminates last-place plurality winners.

In the United States and Australia, the terms ranked-choice voting and preferential voting are usually used to refer to the alternative or single transferable vote by way of conflation. However, terms these have also been used to refer to ranked voting systems in general.[2]

History of ranked voting[edit]

The earliest known proposals for a ranked voting system other than plurality can be traced to the works of Ramon Llull in the late 13th century, who developed what would later be known as Copeland's method.[citation needed]

A second wave of analysis began when Jean-Charles de Borda published a paper in 1781, advocating for the Borda count, which he called the "order of merit". This methodology drew criticism from the Marquis de Condorcet, who developed his own methods after arguing Borda's approach did not accurately reflect group preferences, because it was vulnerable to spoiler effects and often eliminated majority-preferred candidates.[3]

Interest in ranked voting continued throughout the 19th century. Danish pioneer Carl Andræ formulated the single transferable vote (STV), which was adopted by his native Denmark in 1855. Condorcet had previously considered the single-winner version of it, the instant-runoff system, but immediately rejected it as pathological.[4][5]

Theoretical exploration of electoral processes was revived by a 1948 paper from Duncan Black[6] and Kenneth Arrow's investigations into social choice theory, a branch of welfare economics that extends rational choice to include different fields.

Adoption[edit]

Plurality voting is the most common voting system, and has been in widespread use since the earliest democracies.[citation needed]

The single transferable vote (STV) system was first invented by Carl Andræ in Denmark, where it was used briefly before being abandoned.[citation needed] It was later rediscovered by British lawyer Thomas Hare, whose writings soon spread the method throughout the British Empire. Tasmania adopted the method in the 1890s, with broader adoption throughout Australia beginning in the 1910s and 1920s.[7] It gained adoption in Ireland, South Africa, STV was adopted for governmental elections in Ireland, Malta, and approximately 20 cities each in the United States and Canada.[citation needed]

However, this state , with cities abandoning the system en masse throughout the . In more recent years, STV has seen a comeback the United States. In November 2016, the voters of Maine narrowly passed Question 5, approving ranked-choice voting for all elections. This was first put to use in 2018, marking the inaugural use of a ranked choice voting system in a statewide election in the United States. Later, in November 2020, Alaska voters passed Measure 2, bringing ranked choice voting into effect from 2022.[8][9] However, as before, the system has faced strong opposition. After a series of electoral pathologies in Alaska's 2022 congressional special election, a poll found 54% of Alaskans supported a repeal of the system; this included a third of the voters who had supported Peltola, the ultimate winner in the election.[10]

In the United States, single-winner ranked voting is used to elect politicians in Maine[11] and Alaska.[12] Nauru uses a positional method called the Dowdall system. Some local elections in New Zealand use the single transferable vote.[13]

Theoretical foundations of ranked voting[edit]

Majority-rule[edit]

Many concepts formulated by the Marquis de Condorcet in the 18th century continue to significantly impact the field. One of these concepts is the Condorcet winner, a candidate preferred over all others by a majority of voters. A voting system that consistently elects this candidate, if one exists, is known as Condorcet consistent or as satisfying the Condorcet criterion. Such systems are referred to as Condorcet methods.

However, in elections where no Condorcet winner exists, a Condorcet cycle is likely to occur, best explained through an example. Suppose an election involves three candidates - A, B, and C, with 30 voters such that ten vote C–B–A, ten vote B–A–C, and ten vote A–C–B. In this case, no Condorcet winner exists. Specifically, A cannot be a Condorcet winner as two-thirds of voters prefer B over A. Similarly, B cannot be the winner as two-thirds prefer C over B, and C cannot win as two-thirds prefer A over C. This forms a cycle where it is impossible to find a Condorcet winner.

Social well-being[edit]

Voting systems can also be judged on their ability to deliver results that maximize the overall well-being of society, i.e. to choose the "best candidate".

Spatial voting models[edit]

A spatial model of voting

Spatial voting models, initially proposed by Duncan Black and further developed by Anthony Downs, provide a theoretical framework for understanding electoral behavior. In these models, each voter and candidate is positioned within an ideological space that can span multiple dimensions. It is assumed that voters tend to favor candidates who closely align with their ideological position over those more distant. A political spectrum is an example of a one-dimensional spatial model.

The accompanying diagram presents a simple one-dimensional spatial model, illustrating the voting methods discussed in subsequent sections of this article. It is assumed that supporters of candidate A cast their votes in the order of A-B-C, while candidate C's supporters vote in the sequence of C-B-A. Supporters of candidate B are equally divided between listing A or C as their second preference. From the data in the accompanying table, if there are 100 voters, the distribution of ballots will reflect the positioning of voters and candidates along the ideological spectrum.

Spatial models offer significant insights because they provide an intuitive visualization of voter preferences. These models give rise to an influential theorem—the median voter theorem—attributed to Duncan Black. This theorem stipulates that within a broad range of spatial models, including all one-dimensional models and all symmetric models across multiple dimensions, a Condorcet winner is guaranteed to exist. Moreover, this winner is the candidate closest to the median of the voter distribution.

Empirical research has generally found that spatial voting models give a highly accurate explanation of most voting behavior.[14]

Other theorems[edit]

Arrow's impossibility theorem is a generalization of Condorcet's result on the impossibility of majority rule. It demonstrates that every ranked voting algorithm is susceptible to the spoiler effect. Gibbard's theorem provides a closely-related corollary, that no voting rule can have a single, always-best strategy that does not depend on other voters' ballots.

Examples[edit]

Borda count[edit]

The Borda count is a ranking system that assigns scores to each candidate based on their position in each ballot. If m is the total number of candidates, the candidate ranked first on a ballot receives m - 1 points, the second receives m - 2, and so on, until the last-ranked candidate who receives zero. In the given example, candidate B emerges as the winner with 130 out of a total 300 points. While the Borda count is simple to administer, it does not meet the Condorcet criterion. It is heavily affected by the entry of candidates who have no real chance of winning.

Other positional systems[edit]

Systems that award points in a similar way but possibly with a different formula are called positional systems. The score vector (m - 1, m - 2,..., 0) is associated with the Borda count, (1, 1/2, 1/3,..., 1/m) defines the Dowdall system and (1, 0,... , 0) equates to first-past-the-post.

Instant-runoff (Ranked-choice) voting[edit]

Instant-runoff voting, often conflated with ranked-choice voting in general, is a voting method that recursively eliminates the plurality loser of an election until only one candidate is left.

In the given example, Candidate A is declared winner in the third round, having received a majority of votes through the accumulation of first-choice votes and redistributed votes from Candidate B. This system embodies the voters' preferences between the final candidates, stopping when a candidate garners the preference of a majority of voters.

IRV is notable in that it does not fulfill the Condorcet winner criterion, and as a result will not always elect majority-preferred candidate.

Defeat-dropping Condorcet[edit]

The defeat-dropping Condorcet methods all look for a Condorcet winner, i.e. a candidate who is not defeated by any other candidate in a one-on-one majority vote. If there is no Condorcet winner, they repeatedly drop (set the margin to zero) for the one-on-one matchups that are closest to being tied, until there is a Condorcet winner. How "closest to being tied" is defined depends on the specific rule. For minimax, the elections with the smallest margin of victory are dropped, whereas in ranked pairs only elections that create a cycle are eligible to be dropped (with defeats being dropped based on the margin of victory).

See also[edit]

References[edit]

  1. ^ Riker, William Harrison (1982). Liberalism against populism: a confrontation between the theory of democracy and the theory of social choice. Waveland Pr. pp. 29–30. ISBN 0881333670. OCLC 316034736. Ordinal utility is a measure of preferences in terms of rank orders—that is, first, second, etc. ... Cardinal utility is a measure of preferences on a scale of cardinal numbers, such as the scale from zero to one or the scale from one to ten.
  2. ^ "Bill Status H.424: An act relating to town, city, and village elections for single-seat offices using ranked-choice voting". legislature.vermont.gov. Retrieved 2024-03-23. Condorcet winner. If a candidate is the winning candidate in every paired comparison, the candidate shall be declared the winner of the election.
  3. ^ George G. Szpiro, "Numbers Rule" (2010).
  4. ^ Nanson, E. J. (1882). "Methods of election: Ware's Method". Transactions and Proceedings of the Royal Society of Victoria. 19: 206. The method was, however, mentioned by Condorcet, but only to be condemned.
  5. ^ Condorcet, Jean-Antoine-Nicolas de Caritat (1788). "On the Constitution and the Functions of Provincial Assemblies". Complete Works of Condorcet (in French). Vol. 13 (published 1804). p. 243. En effet, lorsqu'il y a plus de trois concurrents, le véritable vœu de la pluralité peut être pour un candidat qui n'ait eu aucune des voix dans le premier scrutin.
  6. ^ Duncan Black, "On the Rationale of Group Decision-making" (1948).
  7. ^ Farrell and McAllister, The Australian Electoral System, p. 17
  8. ^ "Ranked Choice Voting in Maine". legislature.maine.gov. State of Maine. 2022-08-23. Retrieved 2022-11-20.
  9. ^ Piper, Kelsey (2020-11-19). "Alaska voters adopt ranked-choice voting in ballot initiative". vox.com. Vox Media. Retrieved 2022-11-20.
  10. ^ "North to the Future: Alaska's Ranked Choice Voting System is Praised and Criticized Nationally". Alaska Public Media.
  11. ^ "Ranked Choice Voting in Maine". Maine State Legislature. Retrieved 21 October 2021.
  12. ^ "Alaska Better Elections Implementation". Alaska Division of Elections. Retrieved 21 October 2021.
  13. ^ "New Zealand Cities Voting to Implement Ranked Choice Voting". 19 September 2017.
  14. ^ T. N. Tideman and F. Plassman, "Modeling the Outcomes of Vote-Casting in Actual Elections" (2012).