Jump to content

Bernstein–Zelevinsky classification

From Wikipedia, the free encyclopedia

In mathematics, the Bernstein–Zelevinsky classification, introduced by Bernstein and Zelevinsky (1977) and Zelevinsky (1980), classifies the irreducible complex smooth representations of a general linear group over a local field in terms of cuspidal representations.

References

[edit]
  • Bernstein, J. (1992), Representations of p-adic groups (PDF), Lectures by Joseph Bernstein. Written by Karl E. Rumelhart, Harvard University{{citation}}: CS1 maint: location missing publisher (link)
  • Bernšteĭn, I. N.; Zelevinskiĭ, A. V. (1976), "Representations of the group GL(n,F), where F is a local non-Archimedean field" (PDF), Akademiya Nauk SSSR I Moskovskoe Matematicheskoe Obshchestvo. Uspekhi Matematicheskikh Nauk, Translation in Russian mathematical Surveys, 31 (3): 5–70, ISSN 0042-1316, MR 0425030
  • Bernstein, I. N.; Zelevinsky, A. V. (1977), "Induced representations of reductive p-adic groups. I", Annales Scientifiques de l'École Normale Supérieure, Série 4, 10 (4): 441–472, doi:10.24033/asens.1333, ISSN 0012-9593, MR 0579172
  • Zelevinsky, A. V. (1980), "Induced representations of reductive p-adic groups. II. On irreducible representations of GL(n)", Annales Scientifiques de l'École Normale Supérieure, Série 4, 13 (2): 165–210, doi:10.24033/asens.1379, ISSN 0012-9593, MR 0584084