List of nuclear power systems in space
Appearance
This list of nuclear power systems in space includes 83 nuclear power systems that were flown to space, or at least launched in an attempt to reach space. Such used nuclear power systems include:
- radioisotope heater units (RHU) (usually produce heat by spontaneous decay of 238
Pu
) - radioisotope thermoelectric generators (RTG) (usually produce heat by spontaneous decay of 238
Pu
and convert it to electricity using a thermoelectric generator) - miniaturized fission reactors (usually produce heat by controlled fission of highly enriched 235
U
and convert it to electricity using a thermionic converter)
Systems never launched are not included here, see Nuclear power in space.
Initial total power is provided as either electrical power (We) or thermal power (Wt), depending on the intended application.
Nation | Mission | Launched | Status | Location | Notes | Type | System name | Nuclear fuel | Power (nominal) | Ref |
---|---|---|---|---|---|---|---|---|---|---|
USA | Transit-4A | 1961 | Intact | Earth orbit | RTG | SNAP-3B | 238 Pu |
2.7 We | [1] | |
USA | Transit-4B | 1961 | Intact | Earth orbit | RTG | SNAP-3B | 238 Pu |
2.7 We | [1] | |
USA | Transit 5BN-1 | 1963 | Intact | Earth orbit | RTG | SNAP-9A | 238 Pu |
25.2 We | [1] | |
USA | Transit 5BN-2 | 1963 | Intact | Earth orbit | RTG | SNAP-9A | 238 Pu |
26.8 We | [1] | |
USA | Transit 5BN-3 | 1964 | Destroyed | - | Failed to reach orbit, burned up in atmosphere. | RTG | SNAP-9A | 238 Pu |
25 We | [2] |
USA | SNAPSHOT | 1965 | Intact | Earth orbit | Low graveyard orbit in 1300 km height | Fission reactor | SNAP-10A | 235 U (uranium-zirconium hydride) |
500 We | [1] |
USA | Nimbus B (Nimbus-B1) | 1968-05-18 | Destroyed | - | Crashed at launch, radioactive material from RTG recovered from ocean and reused | RTG | SNAP-19B (2) | 238 Pu |
56 We | [1][3] |
USA | Nimbus 3 (Nimbus-B2) | 1969-04-14 | Destroyed | - | Earth re-entry 1972 | RTG | SNAP-19B (2) | 238 Pu |
56 We | [1] |
USA | Nimbus IV | 1970 | Intact | Earth orbit | RTG | SNAP-19 | [4] | |||
USA | Nimbus V | 1972 | Intact | Earth orbit | RTG | SNAP-19 | [4] | |||
USA | Nimbus VI | 1975 | Damaged | Earth orbit | RTG | SNAP-19 | [4] | |||
USA | Nimbus VII | 1978 | Damaged | Earth orbit | RTG | SNAP-19 | [4] | |||
USA | Apollo 11 | 1969 | Intact | Lunar surface | Sea of Tranquility | RHU | RHU (2) | 30 Wt | [1] | |
USA | Apollo 12 ALSEP | 1969 | Intact | Lunar surface | Ocean of Storms[5] | RTG | SNAP-27 | 238 Pu |
73.6 We | [1] |
USA | Apollo 13 ALSEP | 1970 | Intact | Earth ocean | Survived reentry, remains at 7000+ ft depth, Tonga Trench, Pacific Ocean | RTG | SNAP-27 | 238 Pu |
73 We | [1] |
USA | Apollo 14 ALSEP | 1971 | Intact | Lunar surface | Fra Mauro | RTG | SNAP-27 | 238 Pu |
72.5 We | [1] |
USA | Apollo 15 ALSEP | 1971 | Intact | Lunar surface | Hadley–Apennine | RTG | SNAP-27 | 238 Pu |
74.7 We | [1] |
USA | Pioneer 10 | 1972 | Intact | Solar escape trajectory | RTG | SNAP-19 (4) + RHU (12) | 238 Pu |
162.8 We + 12 Wt | [1] | |
USA | Apollo 16 ALSEP | 1972 | Intact | Lunar surface | Descartes Highlands | RTG | SNAP-27 | 238 Pu |
70.9 We | [1] |
USA | TRAID-01-1X | 1972 | Intact | Earth orbit | RTG | SNAP-19 | 238 Pu |
35.6 We | [1] | |
USA | Apollo 17 ALSEP | 1972 | Intact | Lunar surface | Taurus–Littrow | RTG | SNAP-27 | 238 Pu |
75.4 We | [1] |
USA | Pioneer 11 | 1973 | Intact | Solar escape trajectory | RTG | RTG SNAP-19 (4) + RHU (12) | 238 Pu |
159.6 We + 12 Wt | [1] | |
USA | Viking 1 | 1976 | Intact | Mars surface | Chryse Planitia | RTG | lander modified SNAP-19 (2) | 238 Pu |
84.6 We | [1] |
USA | Viking 2 | 1976 | Intact | Mars surface | Utopia Planitia | RTG | lander modified SNAP-19 (2) | 238 Pu |
86.2 We | [1] |
USA | LES-8 | 1976 | Intact | Earth orbit | Near geostationary orbit | RTG | MHW-RTG (2) | 238 Pu |
307.4 We | [1] |
USA | LES-9 | 1976 | Intact | Earth orbit | Near geostationary orbit | RTG | MHW-RTG (2) | 238 Pu |
308.4 We | [1] |
USA | Voyager 1 | 1977 | In use | Solar escape trajectory | RTG | MHW-RTG (3) + RHU(9) | 238 Pu |
477.6 We + 9 Wt | [1] | |
USA | Voyager 2 | 1977 | In use | Solar escape trajectory | RTG | MHW-RTG (3) + RHU(9) | 238 Pu |
470.1 We + 9 Wt | [1] | |
USA | Mars 2020/Perseverance | 2020 | In use | Mars surface | RTG | MMRTG | 238 Pu |
110 We | [6] | |
USA | Galileo | 1989 | Destroyed | - | Jupiter atmospheric entry | RTG | GPHS-RTG (2) | 576.8 We | [1] | |
USA | Ulysses | 1990 | Intact | Heliocentric orbit | RTG | GPHS-RTG | 283 We | [1] | ||
USA | Cassini | 1997 | Destroyed | - | Burned-up in Saturn's atmosphere | RTG | GPHS-RTG (3) | 238 Pu |
887 We | |
USA | New Horizons | 2006 | In use | Solar escape trajectory | RTG | GPHS-RTG (1) | 238 Pu |
249.6 We | ||
USA | MSL/Curiosity rover | 2011 | In use | Mars surface | RTG | MMRTG | 238 Pu |
113 We | ||
Soviet Union | Kosmos 84 | 1965 | Intact | Earth orbit | RTG | Orion-1 RTG | 210 Po |
[4][7] | ||
Soviet Union | Kosmos 90 | 1965 | Intact | Earth orbit | RTG | Orion-1 RTG | 210 Po |
[4][7] | ||
Soviet Union | Kosmos 198 (RORSAT) | 1967-12-27 | Intact | Earth orbit | Fission reactor | BES-5 ?? | 235 U |
[4][8] | ||
Soviet Union | Kosmos 209 (RORSAT) | 1968-03-22 | Intact | Earth orbit | Fission reactor | BES-5 ?? | 235 U |
[4][8] | ||
Soviet Union | Kosmos 300 (Moon) | 1969-09-23 | Destroyed | - | Failed to achieve escape trajectory, burned up 4 days after launch | RTG | 210 Po |
[9] | ||
Soviet Union | Kosmos 305 (Moon) | 1969-10-22 | Destroyed | - | Failed to achieve escape trajectory, burned up 2 days after launch | RTG | 210 Po |
[4][10][11][12][9] | ||
Soviet Union | Kosmos 367 (RORSAT) | 1970-10-03 | Intact | Earth orbit, 579 mile altitude | Fission reactor | BES-5 ?? | 235 U |
2 kWe | [4][8][13] | |
Soviet Union | Kosmos 402 (RORSAT) | 1971 | Intact | Earth orbit | Fission reactor | BES-5 ?? | 235 U |
2 kWe | [4][8] | |
Soviet Union | Kosmos 469 (RORSAT) | 1971 | Intact | High orbit | Fission reactor | BES-5 (officially confirmed) | 235 U |
2 kWe | [14] | |
Soviet Union | Kosmos 516 | 1972 | Intact | High orbited 1972 | Fission reactor | BES-5 | 235 U |
2 kWe | [14] | |
Soviet Union | RORSAT | 1973 | Destroyed | - | Launch failure over Pacific Ocean, near Japan | Fission reactor | BES-5 | 235 U |
2 kWe | [14] |
Soviet Union | Kosmos 626 | 1973 | Intact | Earth orbit | Fission reactor | BES-5 | 235 U |
2 kWe | [14] | |
Soviet Union | Kosmos 651 | 1974 | Fission reactor | BES-5 | 235 U |
2 kWe | [14] | |||
Soviet Union | Kosmos 654 | 1974 | Fission reactor | BES-5 | 235 U |
2 kWe | [14] | |||
Soviet Union | Kosmos 723 | 1975 | Fission reactor | BES-5 | 235 U |
2 kWe | [14] | |||
Soviet Union | Kosmos 724 | 1975 | Fission reactor | BES-5 | 235 U |
2 kWe | [14] | |||
Soviet Union | Kosmos 785 | 1975 | Destroyed | - | Failed after reaching orbit | Fission reactor | BES-5 | 235 U |
2 kWe | [14] |
Soviet Union | Kosmos 860 | 1976 | Fission reactor | BES-5 | 235 U |
2 kWe | [14] | |||
Soviet Union | Kosmos 861 | 1976 | Fission reactor | BES-5 | 235 U |
2 kWe | [14] | |||
Soviet Union | Kosmos 952 | 1977 | Fission reactor | BES-5 | 235 U |
2 kWe | [14] | |||
Soviet Union | Kosmos 954 | 1977 | Destroyed | - | Exploded on re-entry 1978 (over Canada) | Fission reactor | BES-5 | 235 U |
2 kWe | [14] |
Soviet Union | Kosmos 1176 | 1980 | Intact | Earth orbit | 11788/11971 Earth orbit 870–970 km | Fission reactor | BES-5 | 235 U |
2 kWe | [14] |
Soviet Union | Kosmos 1249 | 1981 | Fission reactor | BES-5 | 235 U |
2 kWe | [14] | |||
Soviet Union | Kosmos 1266 | 1981 | Fission reactor | BES-5 | 235 U |
2 kWe | [14] | |||
Soviet Union | Kosmos 1299 | 1981 | Fission reactor | BES-5 | 235 U |
2 kWe | [14] | |||
Soviet Union | Kosmos 1402 | 1982 | Destroyed | - | Earth re-entry 1983 (South Atlantic) | Fission reactor | BES-5 | 235 U |
2 kWe | [14] |
Soviet Union | Kosmos 1372 | 1982 | Fission reactor | BES-5 | 235 U |
2 kWe | [14] | |||
Soviet Union | Kosmos 1365 | 1982 | Fission reactor | BES-5 | 235 U |
2 kWe | [14] | |||
Soviet Union | Kosmos 1412 | 1982 | Fission reactor | BES-5 | 235 U |
2 kWe | [14] | |||
Soviet Union | Kosmos 1461 | 1983 | Destroyed | - | Earth orbit, exploded | Fission reactor | BES-5 | 235 U |
2 kWe | [4] |
Soviet Union | Kosmos 1597 | 1984 | Fission reactor | BES-5 | 235 U |
2 kWe | [14] | |||
Soviet Union | Kosmos 1607 | 1984 | Intact | Earth orbit | High orbited 1985 | Fission reactor | BES-5 | 235 U |
2 kWe | [14] |
Soviet Union | Kosmos 1670 | 1985 | Intact | Earth orbit | High orbited 1985 | Fission reactor | BES-5 | 235 U |
2 kWe | [14] |
Soviet Union | Kosmos 1677 | 1985 | Intact | Earth orbit | High orbited 1985 | Fission reactor | BES-5 | 235 U |
2 kWe | [14] |
Soviet Union | Kosmos 1736 | 1986 | Intact | Earth orbit | High orbited 1986 | Fission reactor | BES-5 | 235 U |
2 kWe | [14] |
Soviet Union | Kosmos 1771 | 1986 | Intact | Earth orbit | High orbited 1986 | Fission reactor | BES-5 | 235 U |
2 kWe | [14] |
Soviet Union | Kosmos 1900 | 1987 | Intact | Earth orbit | Earth orbit, 454 mile altitude | Fission reactor | BES-5 | 235 U |
2 kWe | [14][13] |
Soviet Union | Kosmos 1860 | 1987 | Fission reactor | BES-5 | 235 U |
2 kWe | [14] | |||
Soviet Union | Kosmos 1932 | 1988 | Intact | Earth orbit | 800–900 km | Fission reactor | BES-5 | 235 U |
2 kWe | [14] |
Soviet Union | Kosmos 1682 | 1985 | Intact | Earth orbit | High orbited 1986 | Fission reactor | BES-5 | 235 U |
2 kWe | [14] |
Soviet Union | Kosmos 1818 (RORSAT) | 1987 | Destroyed | - | Destroyed in high Earth orbit | Fission reactor | Topaz-I | 235 U |
5 kWe | [15] |
Soviet Union | Kosmos 1867 (RORSAT) | 1987 | Intact | Earth | Parked in high Earth orbit | Fission reactor | Topaz-I | 235 U |
5 kWe | [16] |
Soviet Union | Lunokhod 201 | 1969-02-19 | Destroyed | - | Rocket exploded at launch, radioactive material from RHU spread over Russia | RHU | 210 Po |
[17] | ||
Soviet Union | Lunokhod 1 | 1970 | Intact | Lunar surface | RHU | 210 Po |
[17] | |||
Soviet Union | Lunokhod 2 | 1973 | Intact | Lunar surface | RHU | 210 Po |
[17] | |||
Russia | Mars 96 | 1996 | Destroyed | - | Launch failure, entered Pacific Ocean | RHU | RHU (4) | 238 Pu |
[17] | |
China | Chang'e 3 lander | 2013 | In use | Lunar surface | RHU | In combination with solar panels allows continued use of the Lunar-based ultraviolet telescope | 238 Pu |
[18] | ||
China | Yutu rover | 2013 | Intact | Lunar surface | RHU | Communication lost in 2015 | ||||
India | Chandrayaan-3 propulsion module | 2023 | In use | Earth orbit | RHU | BARC RHU, transferred back from lunar orbit after lander mission completion | 241Am | 2 Wt | [20] |
See also
[edit]- Outer Space Treaty
- List of high-altitude nuclear explosions
- Nuclear power in space
- List of artificial radiation belts
- Category:Nuclear-powered robots
References
[edit]- ^ a b c d e f g h i j k l m n o p q r s t u v w x y "Atomic Power in Space II: A History 2015" (PDF). inl.gov. Idaho National Laboratory. September 2015. Retrieved 13 June 2018.
- ^ "Transit". Encyclopedia Astronautica. Archived from the original on 24 January 2013. Retrieved 7 May 2013.
- ^ A. Angelo Jr. and D. Buden (1985). Space Nuclear Power. Krieger Publishing Company. ISBN 0-89464-000-3.
- ^ a b c d e f g h i j k l Hagen, Regina (November 8, 1998). "Nuclear Powered Space Missions - Past and Future". space4peace.org. Retrieved 13 June 2018.
- ^ David M. Harland (2011). Apollo 12 - On the Ocean of Storms. Springer Science & Business Media. p. 269. ISBN 978-1-4419-7607-9.
- ^ mars.nasa.gov. "Electrical Power". mars.nasa.gov. Retrieved 2021-02-25.
- ^ a b Bennett, Gary L. (August 6, 1989). "A LOOK AT THE SOVIET SPACE NUCLEAR POWER PROGRAM" (PDF). International Forum on Energy Engineering. IECEC-89. NASA Propulsion, Power and Energy Division. Retrieved 25 June 2018.
- ^ a b c d Sven Grahn. "The US-A program (Radar Ocean Reconnaissance Satellites)". svengrahn.pp.se. Retrieved 2020-05-12.
- ^ a b "The 2014 NASA Nuclear Power Assessment Study (NPAS): Safety, Environmental Impact, and Launch Approval Considerations and Findings" (PDF). Retrieved 2024-06-15.
- ^ Encyclopedia Astronautica article on the US-A RORSAT programme.
- ^ "USSR - Luna Programme".
- ^ "NASA - NSSDCA - Spacecraft - Details".
- ^ a b "Top 10 Space Age Radiation Incidents". 20 January 2012.
- ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae "US-A". Encyclopedia Astronautica. Mark Wade. 14 September 2007. Archived from the original on 2007-09-14. Retrieved 13 June 2018.
- ^ "Old Russian Nuclear Satellite Returns". Spacedaily.com. Retrieved 2016-02-23.
- ^ Lardier, Christian; Barensky, Stefan (March 27, 2018). The Proton Launcher: History and Developments. Wiley-ISTE. ISBN 978-1786301765.
- ^ a b c d Karacalıoğlu, Göktuğ (January 6, 2014). "Energy Resources for Space Missions". Space Safety Magazine. Retrieved January 18, 2014.
- ^ SUN, ZeZhou; JIA, Yang; ZHANG, He (November 2013). "Technological advancements and promotion roles of Chang'e-3 lunar probe mission". Science China. 56 (11): 2702–2708. Bibcode:2013ScChE..56.2702S. doi:10.1007/s11431-013-5377-0. S2CID 111801601. Archived from the original (PDF) on 29 March 2014. Retrieved 25 December 2013.
- ^ "Chang'e-3 - Satellite Missions". earth.esa.int. ESA. Retrieved 12 June 2018.
- ^ "Nuclear energy keeps Chandrayaan-3 propulsion module going". The Times of India. 2023-10-31. ISSN 0971-8257. Retrieved 2023-10-31.