Jump to content

Period domain

From Wikipedia, the free encyclopedia

In mathematics, a period domain is a parameter space for a polarized Hodge structure. They can often be represented as the quotient of a Lie group by a compact subgroup.

See also

[edit]

References

[edit]
  • Carlson, James; Müller-Stach, Stefan; Peters, Chris (2003), Period mappings and period domains, Cambridge Studies in Advanced Mathematics, vol. 85, Cambridge University Press, ISBN 978-0-521-81466-9, MR 2012297
  • Carlson, James; Griffiths, Phillip (2008), "What is ... a period domain?" (PDF), Notices of the American Mathematical Society, 55 (11): 1418–1419, ISSN 0002-9920, MR 2463994
  • Griffiths, Phillip; Schmid, Wilfried (1969), "Locally homogeneous complex manifolds", Acta Mathematica, 123: 253–302, doi:10.1007/BF02392390, ISSN 0001-5962, MR 0259958