Takeshi Saito (mathematician)
Appearance
Takeshi Saito (斎藤 毅 Saitō Takeshi, born 9 September 1961) is a Japanese mathematician, specializing in some areas of number theory and algebraic geometry.[1] His thesis advisor was Kazuya Kato.[2]
Saito was an invited speaker of the International Congress of Mathematicians in 2010.[3]
Selected publications
[edit]Articles
[edit]- Saito, Takeshi (1987). "Vanishing Cycles and Geometry of Curves Over a Discrete Valuation Ring". American Journal of Mathematics. 109 (6): 1043–1085. doi:10.2307/2374585. ISSN 0002-9327. JSTOR 2374585.
- Saitō, Takeshi (1993). "Determinant representation, Jacobi sum and de Rham discriminant (Algebraic Number Theory : Recent Developments and Their Backgrounds)" (PDF). 数理解析研究所講究録 (Mathematical Analysis Workshop Proceedings) (844). Departmental Bulletin Paper, Kyoto University: 79–83.
- Saito, Takeshi (2004). "Log smooth extension of a family of curves and semi-stable reduction". Journal of Algebraic Geometry. 13 (2): 287–322. CiteSeerX 10.1.1.25.4186. doi:10.1090/S1056-3911-03-00338-2.
- Saito, Takeshi (2014). "Characteristic cycle and the Euler number of a constructible sheaf on a surface". arXiv:1402.5720 [math.AG].
Books
[edit]- Kato, Kazuya; Kurokawa, Nobushige; Saito, Takeshi; Kurihara, Masato (2000). Number Theory 1: Fermat's Dream. Translations of Mathematical Monographs, vol. 186. American Mathematical Soc. ISBN 978-0-8218-0863-4.
- Kato, Kazuya; Kurokawa, Nobushige; Saitō, Takeshi; Kurihara, Masato (2000). Number Theory 2: Introduction to class field theory. Translations of Mathematical Monographs, vol. 240. American Mathematical Society. ISBN 978-0-8218-1355-3.
- Saito, Takeshi (2014-12-18). Fermat's Last Theorem: The Proof. Translations of Mathematical Monographs, vol. 245. American Mathematical Society. ISBN 978-0-8218-9849-9.
References
[edit]- ^ "Takeshi Saito's Home Page". Department of Mathematics, University of Tokyo.
- ^ Takeshi Saito at the Mathematics Genealogy Project
- ^ Saito, Takeshi (2011). "Wild Ramification of Schemes and Sheaves". Proceedings of the International Congress of Mathematicians 2010 (ICM 2010). Vol. 2. pp. 335–356. doi:10.1142/9789814324359_0054. ISBN 978-981-4324-30-4.