Jump to content

Solar eclipse of August 21, 1933

From Wikipedia, the free encyclopedia
Solar eclipse of August 21, 1933
Map
Type of eclipse
NatureAnnular
Gamma0.0869
Magnitude0.9801
Maximum eclipse
Duration124 s (2 min 4 s)
Coordinates16°54′N 95°54′E / 16.9°N 95.9°E / 16.9; 95.9
Max. width of band71 km (44 mi)
Times (UTC)
Greatest eclipse5:49:11
References
Saros134 (39 of 71)
Catalog # (SE5000)9359

An annular solar eclipse occurred at the Moon's descending node of orbit on Monday, August 21, 1933, with a magnitude of 0.9801. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible from Italian Libya (today's Libya), Egypt, Mandatory Palestine (today's Israel, Palestine and Jordan) including Jerusalem and Amman, French Mandate for Syria and the Lebanon (the part now belonging to Syria), Iraq including Baghdad, Persia, Afghanistan, British Raj (the parts now belonging to Pakistan, India, Bangladesh and Myanmar), Siam (name changed to Thailand later), Dutch East Indies (today's Indonesia), North Borneo (now belonging to Malaysia), and Australia.

Related eclipses[edit]

Eclipses in 1933[edit]

Metonic[edit]

Tzolkinex[edit]

Half-Saros[edit]

Tritos[edit]

Solar Saros 134[edit]

Inex[edit]

Triad[edit]

Solar eclipses of 1931–1935[edit]

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[1]

The partial solar eclipses on April 18, 1931 and October 11, 1931 occur in the previous lunar year eclipse set, and the solar eclipses on January 5, 1935 (partial), June 30, 1935 (partial), and December 25, 1935 (annular) occur in the next lunar year eclipse set.

Solar eclipse series sets from 1931 to 1935
Descending node   Ascending node
Saros Map Gamma Saros Map Gamma
114 September 12, 1931

Partial
1.506 119 March 7, 1932

Annular
−0.9673
124 August 31, 1932

Total
0.8307 129 February 24, 1933

Annular
−0.2191
134 August 21, 1933

Annular
0.0869 139 February 14, 1934

Total
0.4868
144 August 10, 1934

Annular
−0.689 149 February 3, 1935

Partial
1.1438
154 July 30, 1935

Partial
−1.4259

Saros 134[edit]

This eclipse is a part of Saros series 134, repeating every 18 years, 11 days, and containing 71 events. The series started with a partial solar eclipse on June 22, 1248. It contains total eclipses from October 9, 1428 through December 24, 1554; hybrid eclipses from January 3, 1573 through June 27, 1843; and annular eclipses from July 8, 1861 through May 21, 2384. The series ends at member 72 as a partial eclipse on August 6, 2510. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of totality was produced by member 11 at 1 minutes, 30 seconds on October 9, 1428, and the longest duration of annularity will be produced by member 52 at 10 minutes, 55 seconds on January 10, 2168. All eclipses in this series occur at the Moon’s descending node of orbit.[2]

Series members 32–53 occur between 1801 and 2200:
32 33 34

June 6, 1807

June 16, 1825

June 27, 1843
35 36 37

July 8, 1861

July 19, 1879

July 29, 1897
38 39 40

August 10, 1915

August 21, 1933

September 1, 1951
41 42 43

September 11, 1969

September 23, 1987

October 3, 2005
44 45 46

October 14, 2023

October 25, 2041

November 5, 2059
47 48 49

November 15, 2077

November 27, 2095

December 8, 2113
50 51 52

December 19, 2131

December 30, 2149

January 10, 2168
53

January 20, 2186

Inex series[edit]

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings. In the 18th century:

  • Solar Saros 127: Total Solar Eclipse of 1731 Jan 08
  • Solar Saros 128: Annular Solar Eclipse of 1759 Dec 19
  • Solar Saros 129: Annular Solar Eclipse of 1788 Nov 27
Inex series members between 1801 and 2200:
Near lunar perigee After lunar apogee
Before lunar perigee
Before lunar apogee
After lunar perigee

November 9, 1817
(Saros 130)

October 20, 1846
(Saros 131)

September 29, 1875
(Saros 132)

September 9, 1904
(Saros 133)

August 21, 1933
(Saros 134)

July 31, 1962
(Saros 135)

July 11, 1991
(Saros 136)

June 21, 2020
(Saros 137)

May 31, 2049
(Saros 138)

May 11, 2078
(Saros 139)

April 23, 2107
(Saros 140)

April 1, 2136
(Saros 141)

March 12, 2165
(Saros 142)

February 21, 2194
(Saros 143)

In the 23rd century:

  • Solar Saros 144: Annular Solar Eclipse of 2223 Feb 01
  • Solar Saros 145: Total Solar Eclipse of 2252 Jan 12
  • Solar Saros 146: Annular Solar Eclipse of 2280 Dec 22

Notes[edit]

  1. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  2. ^ "NASA - Catalog of Solar Eclipses of Saros 134". eclipse.gsfc.nasa.gov.

References[edit]