Jump to content

Solar eclipse of May 9, 1929

From Wikipedia, the free encyclopedia
Solar eclipse of May 9, 1929
Map
Type of eclipse
NatureTotal
Gamma−0.2887
Magnitude1.0562
Maximum eclipse
Duration307 s (5 min 7 s)
Coordinates1°36′N 92°42′E / 1.6°N 92.7°E / 1.6; 92.7
Max. width of band193 km (120 mi)
Times (UTC)
Greatest eclipse6:10:34
References
Saros127 (53 of 82)
Catalog # (SE5000)9349

A total solar eclipse occurred at the Moon's ascending node of orbit on Thursday, May 9, 1929, with a magnitude of 1.0562. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Totality was visible from Dutch East Indies (today's Indonesia), Federated Malay States (now belonging to Malaysia), Siam (name changed to Thailand later), French Indochina (the part now belonging to Vietnam), Spratly Islands, Philippines, and South Seas Mandate in Japan (the part now belonging to FS Micronesia).

Observations[edit]

A team of British and German scientists observed the total eclipse in Pattani province in southern Siam. King Rama VII and Queen Rambai Barni also visited the observation camp set up by foreign scientists and observed the eclipse together in Pattani. This was the last time that Siam (Thailand) received a large-scale solar eclipse observation team so far. The other teams Thailand received later, including the American team for the total solar eclipse of June 20, 1955 were much smaller.[1]

Related eclipses[edit]

Eclipses in 1929[edit]

Metonic[edit]

Tzolkinex[edit]

Half-Saros[edit]

Tritos[edit]

Solar Saros 127[edit]

Inex[edit]

Triad[edit]

Solar eclipses of 1928–1931[edit]

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[2]

The partial solar eclipse on June 17, 1928 occurs in the previous lunar year eclipse set, and the partial solar eclipse on September 12, 1931 occurs in the next lunar year eclipse set.

Solar eclipse series sets from 1928 to 1931
Ascending node   Descending node
Saros Map Gamma Saros Map Gamma
117 May 19, 1928

Total (non-central)
1.0048 122 November 12, 1928

Partial
1.0861
127 May 9, 1929

Total
−0.2887 132 November 1, 1929

Annular
0.3514
137 April 28, 1930

Hybrid
0.473 142 October 21, 1930

Total
−0.3804
147 April 18, 1931

Partial
1.2643 152 October 11, 1931

Partial
−1.0607

Saros 127[edit]

This eclipse is a part of Saros series 127, repeating every 18 years, 11 days, and containing 82 events. The series started with a partial solar eclipse on October 10, 991 AD. It contains total eclipses from May 14, 1352 through August 15, 2091. There are no annular or hybrid eclipses in this set. The series ends at member 82 as a partial eclipse on March 21, 2452. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of totality was produced by member 31 at 5 minutes, 40 seconds on August 30, 1532. All eclipses in this series occur at the Moon’s ascending node of orbit.[3]

Series members 46–68 occur between 1801 and 2200:
46 47 48

February 21, 1803

March 4, 1821

March 15, 1839
49 50 51

March 25, 1857

April 6, 1875

April 16, 1893
52 53 54

April 28, 1911

May 9, 1929

May 20, 1947
55 56 57

May 30, 1965

June 11, 1983

June 21, 2001
58 59 60

July 2, 2019

July 13, 2037

July 24, 2055
61 62 63

August 3, 2073

August 15, 2091

August 26, 2109
64 65 66

September 6, 2127

September 16, 2145

September 28, 2163
67 68

October 8, 2181

October 19, 2199

Metonic series[edit]

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days).

References[edit]

  1. ^ "SOLAR ECLIPSES IN SIAM (THAILAND)". National Astronomical Research Institute of Thailand. Archived from the original on 30 March 2016.
  2. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  3. ^ "NASA - Catalog of Solar Eclipses of Saros 127". eclipse.gsfc.nasa.gov.

External links[edit]