Jump to content

Solar eclipse of August 22, 1998

From Wikipedia, the free encyclopedia
Solar eclipse of August 22, 1998
Map
Type of eclipse
NatureAnnular
Gamma−0.2644
Magnitude0.9734
Maximum eclipse
Duration194 s (3 min 14 s)
Coordinates3°00′S 145°24′E / 3°S 145.4°E / -3; 145.4
Max. width of band99 km (62 mi)
Times (UTC)
Greatest eclipse2:07:11
References
Saros135 (38 of 71)
Catalog # (SE5000)9504

An annular solar eclipse occurred at the Moon’s ascending node of orbit on Saturday, August 22, 1998, with a magnitude of 0.9734. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible in Indonesia, Malaysia, Papua New Guinea, Solomon Islands (Bellona Island and Rennell Island) and Vanuatu. Occurring only 5.2 days before apogee (on August 27, 1998), the Moon’s apparent diameter was 3.6% smaller than average.[1] [2] [3]

Images[edit]

Observations[edit]

It is usually very dry in Malaysia in August. But due to the El Niño, it rained every day for 2 weeks before the eclipse. On the eclipse day, the sun kept going in and out the gaps of the clouds at first, and later the clouds dispersed near Kota Tinggi District, the observation site of NASA's Johnson Space Center. The whole annular phase was seen. The sky cleared up completely 40 minutes later.[4]

Related eclipses[edit]

Eclipses in 1998[edit]

Metonic[edit]

Tzolkinex[edit]

Half-Saros[edit]

Tritos[edit]

Solar Saros 135[edit]

Inex[edit]

Triad[edit]

Solar eclipses of 1997–2000[edit]

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[5]

The partial solar eclipses on July 1, 2000 and December 25, 2000 occur in the next lunar year eclipse set.

Solar eclipse series sets from 1997 to 2000
Descending node   Ascending node
Saros Map Gamma Saros Map Gamma
120

Totality in Chita, Russia
March 9, 1997

Total
0.9183 125 September 2, 1997

Partial
−1.0352
130

Totality near Guadeloupe
February 26, 1998

Total
0.2391 135 August 22, 1998

Annular
−0.2644
140 February 16, 1999

Annular
−0.4726 145

Totality in France
August 11, 1999

Total
0.5062
150 February 5, 2000

Partial
−1.2233 155 July 31, 2000

Partial
1.2166

Saros 135[edit]

This eclipse is a part of Saros series 135, repeating every 18 years, 11 days, and containing 71 events. The series started with a partial solar eclipse on July 5, 1331. It contains annular eclipses from October 21, 1511 through February 24, 2305; hybrid eclipses on March 8, 2323 and March 18, 2341; and total eclipses from March 29, 2359 through May 22, 2449. The series ends at member 71 as a partial eclipse on August 17, 2593. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of annularity was produced by member 16 at 10 minutes, 41 seconds on December 24, 1601, and the longest duration of totality will be produced by member 62 at 2 minutes, 27 seconds on May 12, 2431. All eclipses in this series occur at the Moon’s ascending node of orbit.[6]

Series members 28–49 occur between 1801 and 2200:
28 29 30

May 5, 1818

May 15, 1836

May 26, 1854
31 32 33

June 6, 1872

June 17, 1890

June 28, 1908
34 35 36

July 9, 1926

July 20, 1944

July 31, 1962
37 38 39

August 10, 1980

August 22, 1998

September 1, 2016
40 42 42

September 12, 2034

September 22, 2052

October 4, 2070
43 44 45

October 14, 2088

October 26, 2106

November 6, 2124
46 47 48

November 17, 2142

November 27, 2160

December 9, 2178
49

December 19, 2196

Metonic series[edit]

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.

21 eclipse events, progressing from south to north between June 10, 1964, and August 21, 2036
June 10–11 March 27–29 January 15–16 November 3 August 21–22
117 119 121 123 125

June 10, 1964

March 28, 1968

January 16, 1972

November 3, 1975

August 22, 1979
127 129 131 133 135

June 11, 1983

March 29, 1987

January 15, 1991

November 3, 1994

August 22, 1998
137 139 141 143 145

June 10, 2002

March 29, 2006

January 15, 2010

November 3, 2013

August 21, 2017
147 149 151 153 155

June 10, 2021

March 29, 2025

January 14, 2029

November 3, 2032

August 21, 2036

Notes[edit]

  1. ^ "Clouds may put eclipse in shade". The Sydney Morning Herald. Sydney, New South Wales, New South Wales, Australia. 1998-08-22. p. 5. Retrieved 2023-10-21 – via Newspapers.com.
  2. ^ "Saturday". Newsday (Suffolk Edition). 1998-08-19. p. 114. Retrieved 2023-10-21 – via Newspapers.com.
  3. ^ "Eclipse Aug. 23". Mitchell Tribune. 1998-08-05. p. 12. Retrieved 2023-10-21 – via Newspapers.com.
  4. ^ Paul Maley. "The August 22, 1998 Annular Solar Eclipse Seen from Malaysia". Archived from the original on 30 October 2020.
  5. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  6. ^ "NASA - Catalog of Solar Eclipses of Saros 135". eclipse.gsfc.nasa.gov.

References[edit]

Photos: