Jump to content

Solar eclipse of February 25, 1914

From Wikipedia, the free encyclopedia
Solar eclipse of February 25, 1914
Map
Type of eclipse
NatureAnnular
Gamma−0.9416
Magnitude0.9248
Maximum eclipse
Duration335 s (5 min 35 s)
Coordinates62°06′S 113°18′W / 62.1°S 113.3°W / -62.1; -113.3
Max. width of band839 km (521 mi)
Times (UTC)
Greatest eclipse0:13:01
References
Saros119 (60 of 71)
Catalog # (SE5000)9313

An annular solar eclipse occurred at the Moon's ascending node of orbit on Wednesday, February 25, 1914,[1][2] with a magnitude of 0.9248. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

It took place almost entirely over the Southern Ocean, near Antarctica;[1] at its widest, the shadow cast by the moon was 167 mi (269 km) wide.[1] As a result, it could be seen from small patches of land, most notably southern Patagonia and part of New Zealand.[1][2][3] Due to this limited visibility, the Star-Gazette of Elmira said that for readers in the United States it was "not particularly interesting from a popular perspective";[4] the Salina Daily Union in Salina, Kansas said that "you perhaps didn't notice it".[5] It was the first of four eclipses that occurred during the year 1914.[2][3] While its path passed over New Zealand, and some attempted to view it in Wellington, it was reported to not have been visible there due to cloud cover.[6][7]

Related eclipses[edit]

Eclipses in 1914[edit]

Metonic[edit]

Tzolkinex[edit]

Half-Saros[edit]

Tritos[edit]

Solar Saros 119[edit]

Inex[edit]

Triad[edit]

Solar eclipses of 1913–1917[edit]

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[8]

The partial solar eclipses on April 6, 1913 and September 30, 1913 occur in the previous lunar year eclipse set, and the solar eclipses on December 24, 1916 (partial), June 19, 1917 (partial), and December 14, 1917 (annular) occur in the next lunar year eclipse set.

Solar eclipse series sets from 1913 to 1917
Descending node   Ascending node
Saros Map Gamma Saros Map Gamma
114 August 31, 1913

Partial
1.4512 119 February 25, 1914

Annular
−0.9416
124 August 21, 1914

Total
0.7655 129 February 14, 1915

Annular
−0.2024
134 August 10, 1915

Annular
0.0124 139
February 3, 1916

Total
0.4987
144 July 30, 1916

Annular
−0.7709 149 January 23, 1917

Partial
1.1508
154 July 19, 1917

Partial
−1.5101

Saros 119[edit]

This eclipse is a part of Saros series 119, repeating every 18 years, 11 days, and containing 71 events. The series started with a partial solar eclipse on May 15, 850 AD. It contains total eclipses on August 9, 994 AD and August 20, 1012; a hybrid eclipse on August 31, 1030; and annular eclipses from September 10, 1048 through March 18, 1950. The series ends at member 71 as a partial eclipse on June 24, 2112. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of totality was produced by member 10 at 32 seconds on August 20, 1012, and the longest duration of annularity was produced by member 44 at 7 minutes, 37 seconds on September 1, 1625. All eclipses in this series occur at the Moon’s ascending node of orbit.[9]

Tritos series[edit]

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Metonic series[edit]

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days).

References[edit]

  1. ^ a b c d "ECLIPSES OF 1914". The Washington Herald. Washington, District of Columbia. 1914-02-26. p. 4. Retrieved 2023-11-11 – via Newspapers.com.
  2. ^ a b c "AN ECLIPSE OF SUN TOMORROW". The Butte Daily Post. Butte, Montana. 1914-02-23. p. 12. Retrieved 2023-11-11 – via Newspapers.com.
  3. ^ a b "Down in Patagonia and the Southeastern Coast of New Zealant Annular Eclipse of the Sun Is Visible". The Missoula Sentinel. Missoula, Montana. 1914-02-25. p. 6. Retrieved 2023-11-11 – via Newspapers.com.
  4. ^ "Moon Eclipses Sun Is Not Visible Here". Star-Gazette. Elmira, New York. 1914-02-23. p. 2. Retrieved 2023-11-11 – via Newspapers.com.
  5. ^ "ECLIPSE OF THE SUN". The Salina Daily Union. Salina, Kansas. 1914-02-25. p. 1. Retrieved 2023-11-11 – via Newspapers.com.
  6. ^ "ECLIPSE OF THE SUN". The Sydney Morning Herald. Sydney, New South Wales, New South Wales, Australia. 1914-02-26. p. 9. Retrieved 2023-11-11 – via Newspapers.com.
  7. ^ "Clouds obscure eclipse". The Daily Telegraph. Sydney, New South Wales, Australia. 1914-02-26. p. 9. Retrieved 2023-11-11 – via Newspapers.com.
  8. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  9. ^ "NASA - Catalog of Solar Eclipses of Saros 119". eclipse.gsfc.nasa.gov.